Výukový materiál pro projekt Elektronická školička
reg. č. CZ.1.07/1.3.05/02.0041

Základní pojmy informačních a komunikačních technologií (modul 1 ECDL)

Ing. Milan Mikošek, 2010, 21 stran
1 ICT

a) Základní pojmy

Zkratka ICT vychází z anglického názvu "Information and Communication Technologies" t.j. česky "Informační a komunikační technologie". Zahrnuje veškeré technologie, které se používají k práci s informacemi a ke komunikaci. Na českých školách se tento název používá pro předmět, ve kterém se učí počítače a vše kolem nich. Nahrazuje původní název- počítače, práce s počítači, informatika, atd.

Bývalý ministr školství, mládeže a tělovýchovy Ondřej Liška napsal: „Podíl informačních a komunikačních technologií na výuce u nás zaostrává za průměrem zemí OECD. Stále neuspokojivé je i vybavení části škol. To musíme změnit. V následujících letech se chceme na oblast ICT více zaměřit. Je však třeba poučit se z chyb, které se v minulosti staly v souvislosti s mamutími projekty typu Internet do škol. Toto cestou MSMT už nikdy nepůjde.“

Podpora informačních a komunikačních technologií pro učení je cílem programu celoživotního vzdělávání a zvláště programů Comenius, Erasmus, Grundtvig a Leonardo.

Informace. Původ tohoto slova je v latinském informatio a původně znamená vtištění formy či tvaru, utváření. Dnešní význam je - zpráva, sdělení nebo údaj, který se šíří pomocí nosičů - slov, písmen, číslic, obrázků, znaků, signalů (dat).

Informatika je počítačová věda, která se zabývá zpracováním informací.

Bit je základní jednotka informace. Pochází z anglického názvu Binary Digit, značí se b a může nabývat dvou hodnot 1 a 0, obecně ano, pravda a ne, nepravda.

Byte (če se baji) je česky slabika. Značí se B. Je to skupina 8 bitů, pomocí které se dá uložit $2^8 = 256$ různých hodnot. Do 1 Byte je možné uložit 1 znak (v základním kódování).

Převody jednotek:
- 1 B = 8 b
- 1 kB (KB) = 1 024 B = 2^{10} B
- 1 MB = 1 024 kB = 2^{20} B = 1 048 576 B
- 1 GB = 1 024 MB = 2^{30} MB = 2 20 kB = 2^{30} B

b) E-learning

Existuje řada definic e-learningu, které vznikaly v historii. Vzhledem k neustálému vývoji e-learningu a souvisejících informačních a komunikačních technologií, se často výrazně liší:

- E-learning je výuka s využitím výpočetní techniky a internetu. (Petr Kevriny, Moodle OPF, 2005)
- E-learning je v podstatě jakékoli využívání elektronicích materiálních a didaktických prostředků k efektivnímu dosažení vzdělávacího cíle s tím, že je realizován zejména/nejenom prostřednictvím počítačových sítí. V českém prostředí spojován zejména s řízeným studiem v rámci LMS. (Kamil Kepecčý, Základy e-learningu, Net University s.r. o., UP v Olomouci, 2005)
- E-learning je vzdělávací proces, využívající informační a komunikační technologie k tvorbě kurzů, k distribuci studijního obsahu, komunikaci mezi studenty a pedagogy a k řízení studia. (Jan Wagner, Nebojme se e-learningu, Česká škola, 2005)
- E-learning je forma vzdělávání využívající multimediální prvky - prezentace a texty s odkazy, animované sekvence, video snímky, sdílené pracovní plochy, komunikaci s lektorem a spolužáky, testy, elektronické modely procesů, atd. v systému pro řízení studia (LMS). (Virtuální Ostravská univerzita, 2005)
c) Elektronická pošta (e-mail)

d) Přenos hlasu VoIP

VoIP (Voice over Internet Protocol) je technologie, která umožňuje přenos digitalizovaného hlasu pomocí počítačové sítě s protokolem IP (Internet protokol). Umožňuje telefonování pomocí Internetu nebo intranetu. Nejznámějším programem pro využití VoIP je *Skype*.

Jedná se o program, který umožňuje provozovat internetovou telefonii *VoIP* a využívá pro telefonování Internet, Intranet nebo jakéhokoliv jiné datové spojení. Program umožňuje telefonovat mezi svými uživateli zdarma, za poplatek lze telefonovat do tradičních telefonních sítí (služba *SkypeOut*) a případně získat telefonní číslo a přijímat telefonáty z pevných a mobilních sítí se službou *Skypeln*.

Vlastnosti:
- Telefonování v rámci sítě Skype – Zdarma.
- Instant messaging – Zdarma. Zasílání zpráv a souborů mezi uživateli sítě.
- SkypeOut – Placená služba pro telefonování do tradičních telefonních sítí.
- SkypeIn – Placená služba, kdy je účastníkovi přiděleno telefonní číslo, na které se lze dovolat z tradičních telefonních sítí.
- VoiceMail – Placená služba. Poskytuje funkčnost hlasové schránky.
- Skype Video Calling – Videokonference mezi uživateli sítě Skype, zdarma.
- Skype SMS – Placená služba. Umožňuje posílat SMS na mobilní telefony.
- SkypeFind – Služba umožňuje uživatelům vytvářet a hledat v databázi firem.
- Skype Prime – Umožňuje nechat si platit za příchod hovory (vyžaduje účet u PayPal).
- Call forwarding – Umožňuje přesměrovat hovory, když nejste online. Je zpoplatněno pouze na klasické telefony.
- Skype Extras – Doplňkové programy jako hry, nahrávání hovoru, sdílení pracovní plochy; za některé je nutno platit.
- Skypescasts – Velké hlasové konference (až 100 účastníků). Mohou být moderované (moderator rozhoduje, kdo má právě mluvit) [3].
e) Ochrana zdraví - ergonomie, umístění počítače, osvětlení

U počítače bychom měli sedět tak, abychom si nepoškodili páteř, oči, cévy, svaly a šlachy. Několik rad, jak na to:

Pravidlo pravých úhlů

Poskládáme-li své tělo do pravých úhlů, ulehčíme práci svalům a šlachám a umožníme krvi proudit v nesvěřených cévách a žilách. To znamená mít pravý úhel mezi chodidlem a holení, holení a stehnem, stehnem a páteří, předloktím a paží. Jestliže nám proporce těla neumožňují vytvoření pravých úhlů, musíme si pomoci nastavitelným nábytkem, to je židle, případně stolní deskou nebo podložkou pod chodidla.

Na klávesnici počítače bychom měli dosáhnout prsty, které jsou v přímce se zápěstím a předloktím, zápěstí není opřeno o rám klávesnice. Výrobci tak zvaných ergonomických klávesnic, které jsou uprostřed vyvýšené a jakoby zložené, umožní sice písaři mít prsty v přirozenější poloze, v jakém většině, ale současně nutí držet lokty od těla, čímž se neúměrně zatěžuje ramenní svalový pletenec. Rostou tím nároky na krční páteř a riziko bolesti nejen hlavy.

Jak správně sedět u počítače, jaká má být výška židle a stolu a jak má být daleko monitor od očí velmi pěkně znázorňuje nástěnný obraz z vydavatelství Computer Media, který najdete na webu (http://www.computermedia.cz/obrazy/jak-sedet-u-pocitace.html).

Měřme polohu, neseďme cele hodiny strnule.

Monitor

Monitor bychom měli umístit do výše očí a tak daleko, abychom na něm viděli zřetelně a bez námahy to, co vidíme potřebujeme. Nebezpečné jsou notebooky, které mají obrazovku nízko a musíme k ní klopoit nejen oči, ale celou hlavu. Nebezpečí poškození krční páteře předejde, upevníme-li pro delší práci svůj notebook do speciálního stojanu nebo ho podložíme. V těchto případech se neobejdeme bez externí klávesnice.

Myš

Ruka by měla být ohnutá v lokti do pravého úhlu a od zápěstí až po loket položená na podložce, tedy ne natažená. Neprávná poloha ruky při práci s myší může způsobit „tenisový loket” a otlaky na zápěstí.

Důležité je také velikost myší, měla by dobře padnout do dlaně. Existují i myší tvarované pro levou ruku.

Osvětlení

Místo toho by při práci s počítačem měla být celá osvětlena přibližně stejnou intenzitou, jakou intenzitou září monitor, to je cca 500 luxů a více, a to pokud můžeme denním světlem nebo světlem, které se mu svou charakteristikou co nejvíce blíží, například zářivkami s přirozenými spektrálními charakteristikami.

Barva pozadí

Očím nejméně prospívá modré písmo na temném pozadí, doporučená kombinace je černé písmo na světle šedém nebo lehce šedozeleném pozadí.

Brýle

Díváme-li se na obrazovku počítače několik hodin denně a nosíte brýle, stojí za to pořídit si speciální „počítačové“ brýle. Jejich speciálnost spočívá v tom, že jejich dioptrie jsou přesně vyladěny na konstantní vzdálenost vašich očí od monitoru.
f) Životní prostředí - recyklace počítačových komponentů, náplní do tiskáren, úspora energie při práci s počítačem

Technologie osobních počítačů nezahrnuje pouze stolní počítače, ale také notebooky, monitory, tiskárny, scannery a všechny ostatní zařízení, které mohou být k počítači připojeny.

Zamysleme se nad problémy s problematikou recyklace počítačů. Jak počítač ve vaší kanceláři, skladu, skříně nebo garáži nakonec nalezne cestu k řádné recyklači? S počítači musí být zvláštním způsobem zacházeno. Pokud je s počítačem zacházeno špatně, jakákoli hodnota z možného znovupoužití bude ztracena. Pokud není počítač označen za znovupoužitelný, musí být rozložen na různé recyklovatelné součásti. Počítače jsou vyrobeny z plastů, kovů a skla. To vše je v malých součástkách promícháno. Existuje jen málo společností, které jsou schopné recyklovat speciální plasty používané v počítačích, a jen hrstka společností, které provádí recyklace CRT obrazovek. Dále je méně než tucet rafinérií kovu, které mohou zpracovat elektronické desky z počítačů. Aby mohly být tyto společnosti efektivní, musí mít ohromně vybavení, které někde zpracuje tuny materiálu. Počítače musí být shromážděny z tisíc různých míst, aby se dosáhlo potřebného množství k recyklaci.

Elektronika počítačů je vyrobena z cenných zdrojů, včetně vzácných a jiných kovů a jiných materiálů. Všechny výzdvuhují k těžbě a výrobě energii. Mnoho elektronických součástek tedy obsahuje části, které mohou být s malým úsilím vytvořeny a znovu použity. Když tyto součástky zahodíme, zahazujeme zároveň tyto zdroje a vytváříme tak další znečištění spojené s těžbou a výrobou z nových zdrojů.

Některé elektronické součástky (zejména CRT obrazovky (Cathode Ray Tube), elektrické obvody a baterie) obsahující nebezpečné a toxické látky jako olovo, rtuť, kadmium, chrom a několik druhů nehořlavých materiálů, a to v takovém množství, že mohou být před zákonem označeny jako nebezpečné. Zejména CRT obrazovky v počítačových monitoroch mohou obsahovat až 27 procent olova. Od té doby, co jsou autobaterie z odpadu odebrány, reprezentuje elektronika podle některých odhadů největší zdroj těžkých kovů do pěvného odpadu.

Na trhu je mnoho firem, které recyklují tonery a cartridge. To znamená, že se doplní jen toner nebo inkoust, případně některé součásti a zbytek se používá znovu a tím se ušetří jak na materiálu, tak i životní prostředí.

2 Hardware

a) Základní pojmy

Hardware je technické vybavení počítače, čili fyzické vybavení, to znamená vše, co můžeme vzít do ruky. Jsou to součástky počítače, bez kterých by nemohl pracovat.

Počítačová sestava se skládá ze základní jednotky (počítačové skříně, Case), monitoru, klávesnice, myší a reproduktorů.

b) Osobní počítač, PDA, Notebook, Netbook

Osobní počítač

Notebook

Netbook
Tablet PC
Tablet PC je mezistupněm mezi laptopem a kapesním počítačem. Podle původních představ se mělo jednat o jednoúčelový přenosný počítač s vysokou výdrží baterii a s dotykovým displejem. Původní představy se však postupem času vytratily a současné Tablety PC jsou v podstatě klasické laptope se všemi výhodami i nevýhodami. Jediné, co z původní představy zůstalo, je dotykový displej.

PDA (Palmtop)
Ještě menší počítače se nazývají palmtop - počítač do dlaně (palm=dlaň), nebo PDA (personal digital assistant - osobní digitální pomocník). Ten bývá ovládaný obvykle dotykovou obrazovkou a perem (které se nazývá stylus). Původně měly PDA za cíl především pomocí s organizováním času a kontaktů. Současné PDA jsou velmi výkonné a zvládají i přehrávání videa a velké množství dalších aplikací. Často se používají pro čtení e-booků.

Mezi nejčastěji používané operační systémy na PDA patří Windows Mobile, PalmOS a Symbian OS, ale také je možné nasadit na PDA Linux, například J@lme. Součástí PDA bývá často i GPS satelitní navigace.

Obrázek 5 PDA HP iPAQ
Je nutno si uvědomit, že neexistují jen tyto popsané osobní počítače a jejich menší varianty, ale i větší a výkonnější, jako jsou střediskové a superpočítače. Jeden z takovýchto největších superpočítačů má být i v Ostravě na VŠB. Vysoká škola báňská – Technická univerzita Ostrava připravuje ve spolupráci s Ostravskou univerzitou, Slezskou univerzitou a ostravským Ústavem geoniky Akademie věd ČR unikátní projekt pod názvem IT4Innovations (Informační technologie pro inovace). Jeho cílem je vybudovat v krajském městě Moravskoslezského kraje národní centrum excelentního výzkumu v oblasti informačních technologií a vytvořit unikátní základnu pro rozvoj celé řady vědních oborů navazujících na špičkovou matematické řešení a výpočty. V rámci projektu bude mimo jiné pořízen superpočítač, který by měl být uveden do provozu okolo roku 2013, přičemž by se měl v té době zařadit mezi zhruba 100 nejvýkonnějších superpočítačů na světě.

c) Hlavní části počítače
V počítačové skříňi (Case) jsou tyto hlavní části (komponenty):
- zdroj - transformace a usměrňení napětí z 230 na ±5, ±12 a +3,3 voltů
- základní deska (mainboard, motherboard)
- operační paměť - RAM
- procesor - CPU
- karty - rozšiřující desky, které jsou umístěny kolmo k základní desce (grafická, zvuková, sítová, faxmodemová, televizní atd. (dnes již mnohé na základní desce, tzv. integrované – sítová a zvuková na všech základních deskách)
- HDD - pevný disk
- FDD - disketová mechanika (dnes už v mnohých počítačích není)
- CD ROM, CD-RW mechanika (dnes již nahrazována DVD)
- DVD, DVD-RW, DVD-ROM mechanika
- reproduktor
- datové vodiče (k FDD, HDD, CD ROM, DVD)
d) Vstupní a výstupní porty

Počítačové porty jsou technickými prostředky pro připojení periférií. Porty tvoří rozhraní počítače.

PS/2
Šestikolíkové konektory mini-DIN, jimiž se k počítači připojuje myš a klávesnice. Protože tyto konektory nejsou mechanicky kódovány a mohlo by dojít k záměně, rozlišují se barvami: zelený konektor a zástrčka slouží pro myš, modrofialová barva přísluší klávesnici.
Sériový port (COM, RS 232)
Timto konektorem se přenáší informace o velikosti 1 bit za takt dovnitř nebo ven. Velmi jednoduše se programuje. Jde o univerzální komunikační kanál, ke kterému se připojují nejrůznější zařízení od starších myší přes modemy až po PDA, GPS apod. Jeho přenosová rychlost je 115 kb/s. Dnes je již tento port nahrazen portem USB.

![Obrázek 9 Sériový (COM, RS 232) konektor](image)

Paralelní port (LPT, IEEE 1284)
Původně byl vytvořen pro komunikaci s tiskárnou, tedy jednosměrný přenos dat od PC do tiskárny. Později však byl dalšími mody uzpůsoben i pro oboustranný přenos dat rychlostí až jednotek MB/s. Dnes je také nahrazen portem USB.

![Obrázek 10 Paralelní (LPT, IEEE 1284) konektor](image)

USB (Universal Serial Bus)
Toto rozhraní se během posledních let stalo zcela běžnou součástí periférií, které se připojují k počítači. Téměř vytlačilo klasic ke sériový port RS232 a dokonce i paralelní port. Běžně jsou dnes v počítačích rozhraní USB 2.0 a dnes se začínají používat i rozhraní USB 3.0, jejichž přenosová rychlost je 4,8 Gb/s.

Základní parametry rozhraní USB:
- komunikační rychlost od 1,5 Mb/s do 480 Mb/s (USB 2.0)
- komunikační vzdálenost do 5m
- možnost připojení více zařízení
- rozhraní obsahuje 5V napájení
- lze připojit až 127 zařízení pomocí jednoho typu konektoru

USB rozhraní používá dva typy konektorů. Plochého konektora „typ A“, který je dnes v každém počítači a konektor „typ B“, který je určen pro periferní zařízení.

![Obrázek 11 Konektory USB A a USB B](image)

RJ 45
Koncovka RJ-45 je dnes nejčastěji používaný typ zapojení ethernetových kabelů UTP, čili počítačové sítě a připojení k Internetu. Má 8 vodičů. Pro přenos 10 a 100 Mb/s se používají pouze dva páry vodičů. V případě přenosu 1 Gb/s jsou využity všechny 4 páry vodičů.

![Obrázek 12 Konektor RJ 45](image)
FireWire (IEEE 1394)
FireWire byl navržen jako rychlé rozhraní pro připojení externích disků a audio/video zařízení. Opět se můžeme setkat s několika verzemi. Původní FireWire 400 nabízí propustnost 400 Mb/s, zatímco druhý FireWire 800 umí teoreticky až dvojnásobek. Třetí do party je optická verze FireWire, která se však značně odlišuje a zvládá až 3,2 Gbit/s.

Obrázek 13 konektor FireWire (IEEE 1394)

Konektory Jack
Slouží k připojení vstupů a výstupů zvukové karty. Všechny konektory jsou stereo. Modrý je analogový vstup, zelený výstup a růžový mikrofonní vstup. Zvukové karty mívají i další konektory pro zvukové karty 5.1 a 7.1., což jsou výstupy pro další reproduktory – přední, zadní a subwoofer.

Obrázek 14 konektory Jack zvukové karty

D-Sub (k analogovým monitorům)
Klasické CRT monitory a velká část LCD panelů využívá ke spojení s počítačem, resp. jeho grafickou kartou, D-Sub konektor. Nejčastěji bývá označen modrou barvou a má tři řady zdířek. Často je tento konektor označován podle použití také jako VGA.

Obrázek 15 konektor D-Sub

DVI (k digitálním monitorům)
S LCD se na scéně objevilo také DVI, digitální rozhraní pro přenos obrazu. Na rozdíl od D-Sub existují základní dva typy. Čistě digitální jako DVI-D a hybridní DVI-I. Zatímco v DVI konektoru najdeme jen výstup pro digitální LCD panely, verze DVI-I umožňuje nasazení redukce na D-Sub a připojení staršího analogového monitoru. Na grafické kartě se nachází jako u D-Sub konektor samice.

DVI-D je také kompatibilní s novým rozhraním pro televizí ve vysokém rozlišení HDMI. A většina nových televizí je také DVI-D vybavena.

Obrázek 16 Konektor DVI
e) Výkon počítače

Výkon počítače závisí:
- především na výkonu procesoru, tedy na počtu jader (1, Duo - 2 nebo Quad - 4), frekvenci (2,5 až 3,3 GHz) a velikosti rychlé vyrovnávací paměti Cache (512 KB – 12 MB)
- na frekvenci sběrnice FSB (Front Size Bus) (533 – 2 000 MHz)
- na typu (DDR, DDR 2, DDR 3), velikosti (1 – 4 GB) a frekvenci (400 – 2 000 MHz) operační paměti RAM
- na grafickém procesoru a velikosti paměti videokarty (256 MB – 1 GB). Znatebně zejména při práci s grafickými programy, při zpracování videa a u počítačových her.

f) Operační paměť (RAM)

Slouží k uchovávání momentálně zpracovávaných dat a programů. Po vypnutí napájecího napětí se obsah paměti vymaže. Rozlišujeme dva základní typy pamětí RAM - statické RAM (SRAM) a dynamické RAM (DRAM).

Dnes se v počítačích používají tyto operační paměti:
DDR – (Double Data Rate) novější typ paměti typu SDR, 3,3 V, 184pinů (ale jiné umístění zářezů, místo dvou jen jeden), kapacity od 64 do 2048 MB. Vylepšení je v tom, že přenáší data na náběžně i koncové hraně taktovolného impulsu.

DDR2 – „nejnovější“ typ paměti, podobně jako DDR, mají vyšší frekvence, stávají se v současné době standardem. Nevýhodou DDR2 jsou vyšší časy latence než u DDR.

DDR3 – nejnovější paměti, jsou dražší než DDR2 a jejich výkon kromě u CPU Intel Core i7 není využitelný, díky tomu nejsou zatím příliš rozšířené a některé základní desky na ně nemají sloty.

Obrázek 17 Paměťové moduly DDR

Obrázek 18 Pevný disk

g) Pevný disk

Je permanentní magnetické záznamové médium, které uchovává informace i po vypnutí elektrického proudu. Zkratka HDD (hard disk drive).
Fyzická struktura disku:
- tělo disku
- datové médium, které je složeno z jednoho nebo více tuhých kotoučů (ploten) umístěných nad sebou. Data se zapisují do magnetické vrstvy nanesené na každý kotouč z obou stran. Kotouče byly z kovového materiálu, dnes jsou ze skla. Magnetickou vrstvu tvoří oxid kovu.
- synchronní třífázový elektromotorek, který pohání kotouče.
- čtecí a záznamové hlavy, které tvoří cívka, již procházejí elektrický proud. Tato cívka vytváří magnetické pole, které je vedeno přes jádro zapisovací hlavy a v místě štěrbiny prochází magnetické pole na magnetický materiál na kotouči disku a magnetizuje ho. Směr magnetizace závisí na směru zápisového proudu a velikost zmagnetování závisí na šířce štěrbiny. Při výplně disku hladkým měděným tlačnými pistonky čtečka se pohybuje mezi kořenovou a hladkou částí disku.
- vývodové cívky, které se nacházejí v magnetickém poli, lze naměřit napětí vzhledem k čidlovému vývodu, kdy se toto pole mění, tzn. při přechodu z nuly na jedničku a z jedničky na nulu se indukuje v cívce napětí. Toto napětí se získává způsobem formovací. Hlavky se u pevných disků nepohybují po jeho povrchu, ale jsou namířeny do výhledu na ním. Vzniklé napětí zajišťuje aerodynamický vztah vznikající nad roztřeným kotoučem. Vzdálenost vznikajících se hlav nad kotoučem je několik desetin mm. Drobné změny proudu se mohou způsobit rychlosti v disku a znehodnocení dat, proto jsou pevné disky uloženy v prachotěsném pouzdře. Při vypnutí disku zajistí mechanika zaparkovaní magnetických hlav do vyhrazené oblasti.
- vystavování hlav - čtecí a záznamové hlavy jsou přemisťovány nad definovaná místa nad diskem pomocí motorku. Pro vystavení se používají dva různé mechanismy:
 a) krokové motorky - jedná se o starší, levnější a méně spoalehivý vystavovací mechanismus. Jedno početní číslo motoru znamená jeden přičný krok hlavy (posun o jednu stopu)
 b) lineární motorek - nazývá se vystavovací cívka a vyskytuje se téměř u všech dnes nabízených disků. Průchod proudu cívky způsobí její vyčlení, které je užíváno velikosti proudu. Je zde využity zpětné vazby hlavicka čte svou polohu z disku (každá stopa a sektor mají své číslo) a na základě této informace řídící elektronika přidá nebo ubere proud potřebný k vyčlení. Po náhledu vypadku napájení se hlavy vrací samovolně do parkovací zóny.
- elektronika disku - jedná se o generátor třífázového proudu pro synchronní elektromotorek, řadič, cash paměť. Každý pevný disk má své napájení a konektor pro přenášení dat. Disky ATA mají jumper Master, Slave, Single a Cable Select.
U disku se udává:
- výrobce (WD, Seagate, Samsung, IBM)
- kapacita (80 MB až 2 TB)
- otáčky disku (7 200, 10 000 a 15 000 otáček za minutu)
- paměť cache; jedná se o vyrovnávací paměť, do které se načítají data z disku a odsud se pak přenášejí na sběrnici. Dneší disky pracují s vyrovnávací pamětí o velikosti 8 až 64 MB)
- přístopová doba - vyjadřuje rychlost, se kterou disk vyhledává data; je součet dvou časů, doby vystavení a doby čekání. Její hodnota se pohybuje pod 10ms.
 - doba vystavení je časem nutným k pohybu hlav nad určitou stoupou. Doba vystavení je definována jako 1/3 času potřebného pro pohyb přes celý disk.
 - doba čekání je doba, kterou musí hlavice počkat, až se pod ní dotočí potřebný sektor. Technická hodnota doby čekání se uvažuje jako ½ otáčky disku.
h) Vstupní, výstupní a vstupně-výstupní periferie

Zařízení, která připojujeme k počítačové skříně, se nazyvají periferie. Rozdělujeme je na vstupní zařízení - periferie (klávesnice, myš, mikrofon, scanner, herní zařízení, ...), výstupní zařízení - periferie (monitor, tiskárna, reproduktory, ploter, ...) a vstupně-výstupní zařízení - periferie (flash disk, externí disk).

3 Software

Software je programové vybavení počítače.

a) Operační systém

Operační systém je v informatici základní programové vybavení počítače (tj. software), které je zavedeno do paměti počítače při jeho startu a zůstává v činnosti až do jeho vypnutí. Skládá se z jádra (kernel) a pomocných systémových nástrojů. Hlavním úkolem operačního systému je zajistit uživateli možnost ovládat počítač, vytvořit pro procesy stabilní aplikační rozhraní a přidělovat jím systémové zdroje. Operační systém je velmi komplexní software, jehož vývoj je mnohem složitější a náročnější než vývoj aplikačních programů.

b) Rozdělení software dle použití

systémový software — umožňuje efektivní používání počítače
- firmware — software obsažený v hardware (BIOS, firmware vstupně-výstupních zařízení...)
- operační systém — spravuje počítač, vytváří prostředí pro programy
aplikací software — umožňuje uživateli vykonávat nějakou užitečnou činnost, například:
- kancelářské balíky: textový editor, tabulkový procesor, prezentační program, ...
- grafické programy: vektorový grafický editor, bitmapový grafický editor, ...
- vývojové nástroje: vývojové prostředí, překladač, ...
- záboevní software: počítačové hry, přehrávače digitálního zvuku a videa apod.
- výukový software: výukové a zkoušecí programy

Lze vymyslet různá rozdělení podle druhu, účelu, vzhledu, funkčnosti.

c) Rozdělení software dle licencí

Software licencie je v informatici právní nástroj, který umožňuje používat nebo redistribuovat software, který je chráněn zákonem. V České republice se jedná o Autorský zákon.

OEM

OEM (Original Equipment Manufacturer) je obchodní termín, který označuje výrobce zařízení, jenž při výrobě používá díly, komponenty a zařízení od jiných výrobců, a hotový výrobek prodává pod svou vlastní obchodní značkou.

OEM licence je způsob licencování softwaru, kdy je licence k danému programovému vybavení získána koncovým uživatelem současně se zakoupením hardwaru či jiného softwarového produktu. OEM verze softwaru může mít stejný rozsah funkcí jako plná verze, ale je poměrně časté, že funkce OEM verzí jsou omezené. Software licencovaný touto licencí bývá většinou možné používat pouze na daném hardwarovém vybavení a je nepřenositelný na jiný hardware. Pod tímto druhem licence je často prodáván např. operační systém Windows. Software poskytovaný v OEM licenci je možné používat jen na tom počítači, na kterém byl výrobecem nainstalován. Výhodou je především výrazně nižší cena oproti stejněmu softwaru distribuovanému v "krabicovém balení", tj. s možností instalace na libovolný hardware.
Placená licence
Jedná se o licenci, která se dá nainstalovat na 1 počítač.

Multilicence
Jedná se o licenci na více počítačů se stejným licenčním (instalačním) číslem.

Jiné licence
Jsou popsány v poslední kapitole.

4 Počítačové sítě

Pojmem počítačová síť se rozumí zejména spojení dvou a více počítačů tak, aby mohly navzájem sdílet své prostředky. Přitom je jedno zda se jedná o prostředky hardwarové nebo softwarové.

Před nástupem počítačových sítí musel mít každý počítač, ze kterého se chtělo tisknout, vlastní tiskárnu. Případně se musel dokument k tisku nahrát na disketu a odnést k počítači s tiskárnou a vytisknout. Horší situace nastala, pokud s jedním dokumentem nebo databází pracovalo více osob.

V takovém případě se nedalo zaručit, že všichni mají ve stejném okamžiku stejnou verzi s úpravami, které provedly kolega před hodinou.

Společnosti si instalují počítačové sítě především proto, aby mohly sdílet zdroje a aby umožnily přímou komunikaci. Zdroje zahrají data, aplikace a periferní zařízení. Periferním zařízením je například, tiskárna, scanner. Přímá komunikace zahrnuje posílání zpráv, odpovídání na zprávy, čili e-mail, chat, videokonference apod.

a) Typy sítí dle umístění - LAN, MAN, WAN

LAN (Local Area Network - lokální síť)
Zpočátku se používaly malé sítě s asi deseti navzájem propojenými počítači a tiskárnou. Velikost sítě, včetně počtu počítačů, omezovala dostupná technologie. Dnes už je možné dosáhnout podstatné větších síťí. Takovým síťím na jednom podlaží budovy nebo v jedné malé firmě se řídí lokalní síť.

Většina moderních sítí LAN podporuje širokou škálu počítačů a jiných zařízení. Ačkoliv jednotlivé sítě LAN jsou prostorově omezeny (např. oddělení nebo budova úřadu), mohou být propojeny do větších síťí. Podobně sítě LAN se propojují pomocí mostů (bridge), které slouží jako body přenosu mezi sítěmi, rozdílné sítě LAN se spojují ústřednami (gateways, které přenášejí data a zároveň je konvertoval podle protokolů používaných sítí přijemce).

MAN (Metropolitan Area Network - metropolitní síť)
MAN je veřejná síť pracující vysokou rychlostí a schopná přenášet data na vzdálenost až 80 km. Většinou podporuje data i hlas. Tato síť je menší než WAN ale větší než LAN. Pro klasifikaci pro ní platí přibližně to samé, co v síti LAN.

WAN (Wide Area Network - rozlehlá síť)
S růstem geografického dosahu síť připojováním uživatelů v různých městech nebo státech přerůstá síť LAN a MAN do sítě WAN. Počet uživatelů v takové síti může činit od deseti do několika tisíc uživatelů.

Největším a nejznámějším příkladem sítě WAN je síť Internet.
b) Typy sítí dle topologie - sběrnicová, kruhová, hvězdicová

Sběrnicová topologie

Kruhová (prstencová) topologie

Data procházejí všemi počítači, dokud nenalezne počítač s adresou, která odpovídá jím přiřazené adrese.

Hvězdicová topologie

Ve hvězdicové topologii jsou počítače propojeny pomocí kabelových segmentů k centrálnímu prvku sítě, nazývanému rozbočovač (HUB) nebo přepínač (switcho). Signály se přenáší z vysílacího počítače přes rozbočovače do všech počítačů v síti. Tato topologie pochází z počátků používání výpočetní
techniky, kdy bývaly počítače připojeny k centrálnímu počítači mainframe. Mezi každými dvěma stanicemi musí existovat jen jedna cesta!

Hvězdicová topologie nabízí centralizované zdroje a správu. Protože jsou však všechny počítače připojeny k centrálnímu bodu, vyžaduje tato topologie při instalaci velké síť velké množství kabelů. Selhání hubu ve hvězdicové topologii způsobí "spadnutí" sítě u stanic k němu připojených. Je proto vhodné ho chránit před výpadkem elektrického proudu zdrojem UPS.

Pokud ve hvězdicové sítí selže jeden počítač nebo kabel, který ho připojuje k rozbočovači, pouze tento nefunkční počítač nebude moci posílat nebo přijímat data ze sítě. Zbývající část sítě bude i nadále fungovat normálně.

Pro propojení této sítě se používá 8 žilový kabel, tzv. twist nebo UTP kabel [4].

![Obrázek 21 Hvězdicová topologie](image)

c) síť klient/server

Klient-server je síťová architektura, která odděluje klienta (často aplikaci s grafickým uživatelským rozhraním) a server, kteří spolu komunikují přes počítačovou síť. Klient-server aplikace obsahují jak klienta, tak i server.

Klient-server popisuje vztah mezi dvěma počítačovými programy, v nichž první program, klient, žádá o služby jiný program známý server. Na tomto modelu je založen například přístup na E-mail, Web, přístup k databázi... Například Webový prohlížeč, to je klientský program na uživatelském počítači, který může přístupovat k informacím na libovolném webovém serveru na světě.

Model klient/server se stal jedním z hlavních myšlenek síťové technologie. Tento model používá například většina obchodních či firemních aplikací.

d) Internet

Internet je celosvětový systém navzájem propojených počítačových sítí ("síť sítí"), ve kterých mezi sebou počítače komunikují pomocí rodiny protokolů TCP/IP. Společným cílem všech lidí využívajících Internet je bezproblémová komunikace (výměna dat).

Nejznámější službou poskytovanou v rámci Internetu je WWW (kombinace textu, grafiky a multimédii propojených hypertextovými odkazy) a e-mail (elektronická pošta), avšak naleznete v něm i desítky dalších služeb – chat, videokonference, sdílení dat...
e) Intranet

Intranet je počítačová síť, která používá stejné technologie (TCP/IP, HTTP) jako internet. Je ale „soukromá“. To znamená, že je určena pro použití pouze malé skupiny uživatelů (například pracovníci nějakého podniku).

Extranet je také interní či soukromý web, ale přístupová práva jsou rozšířena na vybrané zákazníky, partnery a další uživatele.

f) Typy připojení k Internetu

Dial-up nebo-li vytačené připojení

Počítač je na internet připojen přes telefonní linku za použití modemu (modulátor-demodulátor). Ten funguje na analogovém principu, kdy modem digitální signál převádí na analogový a ten přes linku vysílá k serveru. Rychlost analogového připojení bývá od 2,4 kb/s do 56 kb/s po jedné telefonní lince.

Pokud jste připojeni k internetu, nejde telefonovat a obrácené. Ještě nedávno byla takto k internetu připojena většina uživatelů v České republice. Toto připojení je ale v současnosti již vyňata vytlačováno použitím stále dostupnějšího vysokorychlostního internetu, který je levnější a rychlejší.

Obrázek 22 Dial-up připojení k internetu

ISDN (Integrated Service Digital Network – integrovaná služba digitální sítě)

Dnešní telefonní sítě jsou založeny na digitálních telefonních ústřednách a přenosové cesty mezi ústřednami jsou také plně digitalizovány. Poslední analogová část sítě tak zůstává účastnická připojka. ISDN nabízí plně digitální přenos až k účastníkovi a nabízí možnost komunikovat pomocí jedné digitální účastnické připojky pomocí hlasu, textu a obrazu. Má dva kanály o rychlosti 64 kb/s.

To znamená, že lze současně být připojený k internetu a telefonovat. V případě potřeby větší rychlosti připojení k internetu lze oba kanály využít pro internet, pak je rychlost připojení 128 kb/s a opět nelze současně telefonovat. Dnes je opět tento druh připojení k internetu vyňatan vysokorychlostním internetem.

Obrázek 23 ISDN připojení k Internetu

DSL (Digital Subscriber Line - digitální účastnická linka)

Připojení využívá běžnou telefonní linku, ke které je třeba nainstalovat rozbočovač pásma, který oddělí hlasový provoz od vysokorychlostního datového provozu. Hlasové funkce linky fungují jako dříve, zatímco v datové části spektra se mohou nepřetížit přenášet data. Pak už stačí jen připojit
k počítači DSL modem. Spojení je agregované 1:20, to znamená, že se o rychlost připojení dělí 20 účastníků.

ADSL (Asymmetric Digital Subscriber Line - asymetrická digitální účastnická linka)
Připojení je na stejném principu, jako DSL, avšak pro běžné domácí nasazení se využívá asymetrická varianta (ADSL), kde je vyšší přenosová rychlost ve směru k zákazníkovi (anglicky download) a nižší rychlost směrem od zákazníka (anglicky upload).

Připojka kabelové televize
Připojení k Internetu pomocí kabelové televize se pomalu stává v ČR jedním z nejoblíbenějších, zvláště ve větších městech. Vedení kabelové televize je původně určeno k všesmrrovému šíření signálů (kapacitá média je tedy mezi uživateli sdílená), hlavním problémem je však přenos informací pouze k zákazníkovi a ne i zpět, což sice pro televizní vysílání postačuje, ne však pro internet. Řešení se našlo v podobě speciálního modemu u uživatele a stejného modemu v místní rozvodové jednotce. Ty zajišťují přenos po koaxiálním kabelu na podměrně krátké vzdálenosti, zbytek komunikace je veden již po klasických digitálních přenosových cestách. Přenosová rychlost je kolem 10 Mb/s. Protože je kanál sdílený, u uživatelů je rychlost nejčastěji v jednotkách Mb/s.

Satelitní připojení
Přístup k internetu pomocí satelitu není v České republice příliš rozšířen, což je jistě dáno jeho finanční náročností. Je zapotřebí speciální aparátrum pro přijem signálu. Rychlosti se pohybují okolo jednotek Mb/s, tarifikace je nejčastěji podle přenesených dat.

Mobilní telefonní sítě
Tento druh připojení uspokojí uživatele, kteří potřebují být připojeni k internetu v libovolnou denní či noční dobou a především z libovolného místa v republice. Jsou sice vázány na signál mobilní sítě, ten ale dnes pokrývá prakticky celé naše území. Existují 3 standardy:

- **Sítě GMS** podporují již od svého vzniku přenos dat, a to rychlostmi 9,6 kb/s a (u společnosti Eurotel) 14,4 kb/s. Služba je určena pro nenáročné požadavky pro připojení k internetu a pro prohlížení moderních webových stránek ji neží rozumně použít.

- **HSCDS** - spojením několika GSM kanálů vytváříme přenosovou cestu, jejíž rychlost je násobkem jejich počtu. Prakticky se uplatňuje spojení čtyř kanálů, přenosová rychlost je tedy 43,2 kb/s k uživateli a 14,4 kb/s od uživateli. Jednou společností, která tento již zastaralý způsob přenosu nabízí, je Eurotel.

- **Předchozí dvě technologie blokují prostředky sítě (kanály), i když zrovna nepříjímáme nebo nepošíláme data. Nedostatky odstraňuje GPRS, kde jsou data přenášena formou paketů, platíme tedy za skutečná data a podle jejich objemu. Navíc je zde rychlost zvýšena na 21,4 kb/s po jednom kanále, spojením více kanálů získáváme větší rychlost.**

WiFi (wireless fidelity - bezdrátová věarbona)
Bezdrátová síť může být vybudována různými způsoby v závislosti na požadované funkci. Pracuje na frekvenci 2,4 nebo 5 GHz. Začíná být nejrozšířenější pro domácí použití.

Existují ještě další druhy připojení – pevným kabelem, optickým kabelem a pomocí elektrické rozvodné sítě.

5 Bezpečnost

a) Bezpečnost dat
Mezi významné způsoby zabezpečení dat patří jejich pravidelné zálohování nebo BACKUP. Cílem zálohování dat, je minimalizace dopadu při jejich případné ztrátě nebo poškození. K tomu muží dojít chybou nebo úmyslem člověka. Pokud by to nebylo řešeno, může dojít k ztrátě dat.Existuje více metod zálohování dat, které pokrývají rizika jejich ztráty a poškození.
Každá s těchto metod řeší specifická rizika a pro minimalizaci vznikajících rizik je dobře tyto metody kombinovat. Pro výběr metody je tedy v prvé řadě důležité vědět, jaká rizika chceme založováním řešit. Dalším kritériem je rychlost obnovení dat po poškození a srovnání ušlého zisku způsobeného nedostupnosti dat scénou řešení.

Metoda zrcadlení:

Metoda páskové zálohy:

- 4 pásky pro denní zálohy v pondělí až čtvrtek
- 5 pásek pro 1. až 5. pátok v měsíci
- 12 pásek pro každý měsíc v roce

b) Počítačové viry
Vir je škodlivý program, který se dokáže sám šířit tím, že vytváří (někdy upravované) kopie sebe sama. Hlavním kritériem pro posouzení programu jako viru je fakt, že k šíření využívá jiné soubory (hostitele). Vir se mezi dvěma počítači může přenést již v době, že někdo přenese celého hostitele, na paměťovém médiu (CD-ROM, DVD, externí pevný disk, flash disk) nebo ho pošle prostřednictvím počítačové sítě (e-mailu, přes webové rozhraní).

Na počítačích třídy PC s OS Windows může vir napadnout:

- programy, což jsou soubory s příponou jezíře EXE, COM, BAT, PIF, SYS, SCR
- systémové oblasti, což je boot sektor, partition tabulka
- dokumenty s makry, což mohou být jezíře texty napsané v MS Wordu, sešity Excelu, prezentace Power Pointu a databáze Access
- ostatní objekty, jezíře aktivní internetové moduly jako např. Java applety, VB Scripty a JScripty obsažené na HTML stránkách.

Druhy virů:

Trojský kůň (Trojan horses)
Je většinou program, který se na prvni pohled chová jako zcela legální program, ve skutečnosti však tajně provádí škodlivé operace. Důležitou skutečností je, že trojský kůň není na rozdíl od viru schopen replikace (množení) a nepřipojuje se k hostiteli – souboru. Trojský kůň se tak nejčastěji vyskytuje na počítači pouze v jednom exempláři – souboru, který v sobě obsahuje právě jen toho trojského koně.

Červi (Worms)
Jsou v dnešní době velice rozšířené. Pojem „červ“ označuje takový typ infiltrace, která se do počítače dostane elektronickou poštou (e-mailem). Červ má několik věcí společných s trojským koněm. Na
počítači se opět vyskytuje nejčastěji pouze v jednom exempláři – souboru, který v sobě ukrývá červa. Vyskytuje se pouze jednou, když jich bylo těchto napadených souborů více, riskují tak odhalení některým antivirovým programem. Zavirovaný email většinou obsahuje přílohu se souborem, pokud tento soubor (skrytého červa) uživatel spustí, dojde k jeho aktivaci. Ten se pak nejčastěji ubytuje v počítači a ve vhodném okamžiku odešle další takto postižené e-maily ostatním uživatelům, které si uživatel eviduje ve svém adresáři kontaktů.

Backdoory

Z překladu názvu jako „zadní vratka“ vyplyvá, co tento typ virů bude dělat. Chování těchto virů je opět velice podobné trojískému koni, ale na rozdíl od něj se na sebe nesnaží vůbec upozorňovat. Tíše po spuštění postiženého souboru „zaleže“ do systému a čeká. Čeká na to, až se někdo (tvůrce viru „hacker“) prostřednictvím sítě Internet napojí na postižený počítač, se kterým může provádět prakticky cokoliv. Od postiženého PC může hacker snadno získávat data, vymazávat mu soubory, programy, vypínat operační systém Windows atd.

Makrovír

Obrana proti virům a proti malware

Antivirový program

Kvalitní a pravidelně aktualizovaný antivirový program by měl být na každém počítači. Interval aktualizace virové báze by měl být denně. Pokud se zároveň provádí pravidelně zálohování systémových oblastí dat, je tato ochrana proti zavíravání ve většině případů dostatečná.

Firewall

Oddělil počítač nebo firemní počítačovou síť od vnějšího internetového prostředí. Počítače zapojené do počítačové sítě jsou většinou tímto typem ochrany chráněny automaticky, protože firewall je součástí Proxy serverů. Samostatně počítače používaný softwarový firewall, který je součástí MS Windows, případně od jiného výrobce, nebo hardwarový firewall.

6 Autorské právo

a) Copyright - autorské právo

Autorské právo (anglicky označováno jako copyright) je odvětví práva, které popisuje nároky tvůrců tzv. „autorských děl“, tzn. spisovatele, hudebníky, filmaře, programátory apod. na ochranu před nespravedlivým využíváním jejich tvorby. Prostřednictvím autorského práva poskytuje stát po jistou omezenou dobu autorům výlučnou možnost rozhodnout o některých aspektech využívání jejich děl. Autorské právo je součástí tzv. duševního vlastnictví.

Fakt, že dané dílo je chráněným autorským dílem, se často signalizuje symbolem © následovaným rokem a jménem autora. Tento symbol má však v Česku (i ve většině jiných zemí) pouze ryze informativní význam – dílo je plně chráněno i tehdy, není-li to na něm nijak uvedeno.
b) Licencované programové vybavení
Je popsáno v kapitole 3c.

c) Shareware - volně šířitelné programové vybavení
Produkty jsou pod touto licencí šířeny zdarma. Autor obvykle požaduje zaplacení malé částky až v případě, kdy se uživatelovi produkt líbí a běžně jej používá. Zaplacením této částky se stává registrovaným uživatelem, může dostávat aktualizace, případně je mu k dispozici on-line podpora. Shareware býval v počátcích velmi levný - byl většinou produktem jednoho vývojáře a byl distribuován přímo klientům. Díky značnému rozšíření Internetu se z této licence stal naprosto obvyklý způsob distribuce software, který využívají i dříve typické krabivé produkty.

d) Freeware bezplatné programové vybavení
Forma distribuce software, která ponechává autorovi autorská práva, volně zpřístupňuje plně funkční software ostatním bez poplatků. Software by neměl být prodáván či šířen za úplatu, nesmí být pozměňován, autor může také omezit způsob použití. Autoři poskytují software pod touto licencí většinou pro vlastní uspokojení, prosazení pokrokového nápadu či prostě pro dobro všech.

e) Open source - programové vybavení s volně dostupným zdrojovým kódem
GNU General Public License. Software šířený pod licencí GPL je možno volně používat, modifikovat i šířit, ale za předpokladu, že tento software bude šířen bezplátně (případně za distribuční náklady) s možností získat bezplátně zdrojové kódy. Toto opatření se týká nejen samotného softwaru, ale i softwaru, který je od něj odvozen. Na produkty šířené pod GPL se nevztahuje žádná záruka.

f) Ochraná osobních údajů
Ochrana osobních údajů je v České republice regulována zákonem č. 101/2001 Sb., o ochraně osobních údajů a o změně některých zákonů a dalšími právními předpisy.

Ochrana osobních údajů, někdy se lze setkat s výrazem ochrana osobních dat, představuje v právním smyslu určitý soubor práv a povinností, které se vztahují ke zpracování informací (údajů, dat) o fyzických osobách.

Osobní údaje (osobní data) jsou jakékoliv informace, které se vztahují ke konkrétní fyzické osobě. Nemusí jít vždy o údaje identifikační (jméno, příjmení, rodné číslo, fotografie, otisky prstů), ale i o jiné údaje, které souvisejí se životem určité fyzické osoby (např. velikost oblečení, členství v politické straně, vlastnictví nemovitostí, provozování koníčků).

Proč se zabývat ochranou osobních údajů?
Protože se jedná o součást ochrany osobnosti. Pokud se k sobě mají lidé chovat slušně, pak by součástí tohoto slušného chování mělo být i odpovědně nakládání s jejich osobními údaji. Povinnosti stanovené zákonem na ochranu osobních údajů představují pouze uzakonění něčeho, co slušně lídě, kteří mají k dispozici osobní údaje jiných lidí, stejně dělají. Ochrana osobních údajů by tak měla být součástí lidské slušnosti.
Použitá literatura:

Použité obrázky:

Obrázky 1 – 5, 7 – 18 jsou mé vlastní fotografie.

Obrázek 6 je má vlastní fotografie doplněná popisem.